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Abstract. The effect of spatial dispersion of the bulk dielectric function of a semiconductor 
on the surface potential barrier is studied with the help of a few different surface screening 
models. 

The transmission coefficients for field-emitted electrons calculated using the Miller- 
Good approximation for both transmission over and tunnelling through the barrier are much 
smaller than those p.edicted by the dispersionless theory. 

1. Introduction 

The purpose of this paper is to study the influence of the spatial dispersion of the bulk 
dielectric function of a semiconductor on the shape of the surface potential barrier and 
on field emission. 

Field emission is the phenomenon during which the electrons from a solid tunnel into 
the vacuum through the surface barrier owing to the presence of an external electric 
field. 

Usually in semiconductors this barrier is approximated by 

B(z )  = -e2(eo - 1)/4(e0 + 1)z - eFz (1) 
where it is assumed that the semiconductor occupies the z < 0 region and the electric 
field F is  perpendicular to its surface, i.e. the z = 0 plane. In a typical experiment, F i s  
107-108 V cm-l. The first term in (1) represents the image-force potential and eo is the 
dielectric constant of the semiconductor. 

Since the semiconductor is characterised by the dielectric function rather than by a 
constant, it is expected that the spatial dispersion of the dielectric function involves 
changes in the shape of the barrier (1) and what follows affects the emission. 

Field emission from semiconductors has been investigated experimentally since the 
early 1960s (see the reviews in [1,2]) but until now there has been no exhaustive 
description to account for this phenomenon. It is explained qualitatively only (see, e.g., 
[3,4]) by the Stratton [5]  theory combined with the effective-mass approximation. 
Recently the problem of the influence of the form of the semiconductor dielectric 
function on field emission was raised again in [6,7] where the so-called specular electron 
reflection model [8,9] (see also [lo]) was used to describe the surface screening. This 
model, however, is based on the plane-wave character of the electron wavefunctions 
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and we think that it is more effective for a semi-infinite jellium than for a semi-infinite 
semiconductor. In the present paper, we study the tunnelling of the electrons through 
the surface barrier using some new screening models which are applicable most of all to 
semiconductors. 

2. Surface screening 

To find the potential energy of a point charge Q,,, near a semi-infinite semi- 
conductor, we recall that this energy is the product of Q,,,/2 and the induced poten- 
tial at the point-charge position. In the dispersionless model, this energy is simply 
- Qf, ( eo - 1 ) / 4 ( ~ ~  + 1)z, where z is the distance from the vacuum-dielectric interface, 
i.e. the z = 0 plane. 

Generally, according to the linear response theory, the induced potential Vind is 
related to the total potential Vthrough AVind(r) = 4n J d3r’ ~ ( r ,  r’)V(r’), wherexis the 
polarisability function. It will be more convenient in our case to write down this equation 
in terms of the Hankel transform with respect to p = w: 

V = Vind + Vex,, where Vex, is due to the point charge located say at the distance zo from 
the z = 0 plane. Since we are interested in the value of Vind at the point-charge site, we 
substitute in our expressions zo = z .  

In the models that we are going to apply the polarisability function x of the semi- 
infinite semiconductor is expressed in terms of the functions which characterise the bulk. 
The model used in [7] is described in detail for the example in [lo]. Sometimes it is called 
the specular electron reflection model. It is based on the assumption that 

x(qll,z,z’) = s(-z)s(-z’)[xb(ql1,z -2‘) +Xb(qii,2+2’)1 (3) 
whereXb is the bulk polarisability. Note that xb(411, z )  = (qf - d 2/dz2)ab(q11, z ) ,  where 
(Yb is the susceptibility which is related to the bulk dielectric function through (Fourier 
transform) &,(q) = [&b(q) - 1]/4n. 

Two other descriptions of surface screening have been introduced in [ l l ]  (hereafter 
referred to as model I) and [12] (hereafter referred to as model 11). Model I is based on 
the assumption that a(q,  2 , ~ ’ )  = 6(-z)8(-z’)ab(qlI, z - 2’) and according to the 
discussion in [ll] is applicable to semiconductors and dielectrics rather than to metals. 
The idea behind the development of model I1 lies in the following. In [12] it was shown 
that the susceptibility a o f  a semi-infinite semiconductor can be expressed approximately 
in terms of envelope wavefunctions which in contrast with Bloch functions have the 
plane-wave character, Since the assumption about specular electron reflection con- 
cerning polarisability x (equation (3)) was originally made for jellium and was based on 
the plane-wave character of electron wavefunctions, we believe that in the case of 
semi-infinite semiconductors it should be made concerning susceptibility a [ 121. If we 
introduce the parameter p in order to distinguish between models I and 11, then the 
Hankel transform of the function x in these models has the form 

x(411, 2, 2’) = 8 ( - 2 ) 8 ( - Z ’ ) [ ( q i  - d2/dz2)@b(411, z - z ’ )  

+ P ( 4 f  + d 2 / d Z 2 ) d 4 l l ,  z + z’ - a)] 
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+ a(z)a(z’)[ab(qll, z - 2 ’ )  +p@b(qIl, + z’ - a)] 

- w . 4 ( - z ’ ) [ - a ; , ( q l l ,  z - 2’) + pa;,(411, z + z’ - all 
- .4(-z)a(z’)[a;,(qll, 2 - 2 ’ )  + paL(q11, z + z’ - .)I (4) 

where a(,(qI1, 5)  = (d/d5)ab(q11, 5). Herep  is 0 and 1 for models I and 11, respectively. 
Introducing parameter a, we distinguish in model I1 the position of specular plane for 
electron wavefunctions from the position of the electron density step at the surface [ 121. 

The potential Vis continuous at z = 0. The jump of dV/dz at z = 0 depends on the 
model and is 0 for the specular electron reflection model. For the remaining models, we 
have 

, 2’) dz’). ( 5 )  

Now to solve for the potentials the only input requi-cd in all the methods just 
mentioned is the susceptibility or, what is equivalent, the dielectric function for the bulk 
semiconductor. We choose the form of the dielectric function suggested by Schulze and 
Unger [13] (see the discussion in [7] in connection with this choice): 

&(q) = 1 + ( E O  - l)/[l + ( E O  - l)q2/k$F](l + 3q2/4k$) (6) 
where km and kF are the Thomas-Fermi wavenumber and the Fermi wavenumber, 
respectively. The Schulze-Unger equation characterises an intrinsic semiconductor. 

3. Surface barrier 

3.1. Specular electron rejlection model 

In this case (see [6,7] or [lo]; z 3 0) 

where 

When E is given by (6), then 

a(qll) = 1/&0411 + [ ( E o  - 1)/&01(1/Iql 1 2 )  
X {Re q1 - [(a’ + P ’ ) / ~ 4 e O a 2 p 2  - (a2 + P’)‘] Im q l } .  (9) 

Here a2 = 4k$/3, P2 = k$F/(EO - l ) ,  (q1I2 = [q i  + (a2 + p2)qi + ~ ~ ( l . 2 / 3 ~ ] ~ / ~ ,  Re q1 = 
(21q1I2 + q: + q$)’l2/2, Im q1 = -(21q1l2 - q t  - q$)’I2/2, where q: = q i  + a2 and 

The potential B(z) experienced by an electron (ee,, = e) is equal to eVind (p  = 
$3 = qf + P2. 

0, z ,  z o  = 2)/2 and can be calculated numerically. 
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3.2. Models I and I1 

In order to find the potential in the framework of models I and 11, we followed the 
method of solution of the equations suggested in connection with model I [ l l ] .  Finally 
the expression for the potential becomes 

V(P3 z> = V(4Il? 2 0 ,  Z)JO(P4lI) d4ll (10) 

V(q11, 20 , 2 )  = Qext exp(-qli Iz - zo I) + v4(411, 2 0 )  eXP(-qllz) 

0 

where ( z o  > 0, i.e. the external charge Qext is in the vacuum) 

(11) 
for z > 0 (vacuum) and 

V(4Il9 zo > 2 )  = V1(4(( > 2 0 )  exP(4llz) + V2(4(( 3 2 0 )  

exp(41z) + V3(4Il> 2 0 )  exp(42z) 

= Vl(4Il, 2 0 )  exP(4llz) + 2 Re[V2(411, ZO) exp(41z)l (12) 
for z < 0 (semiconductor). Here q 2  = q? .  Functions Vi(qll, zo) are the solutions of the 
set of the algebraic equations 

P denotes here the permutation a /3 

- + P exp(-4,a)1/4,(41 + 4n)) + 41 + 411. (15) 
A = ( E ~  - l)a2P2/2(a2 - p 2 ) .  When we replace q1 by 411 in a12 (equation (14)) and in 
a42 (equation (15)), we obtain all and ~41, respectively. 

Solving (13) for V,, we get 

V,(q11, zo) = P i I ( 1  - "11 - Re a12) Im a 2 m  - PI 

X [all Im(aZ2~22) - a41 Rea12 Ima22I - 1) Qext exP(-q~lzo). (16) 

As already mentioned, the potential B ( z )  experienced by an electron (eext = e )  is 
eVind(p = 0, z,  zo = z) /2 .  In order to obtain the induced potential Vind outside the 
semiconductor ( z  3 0), we must drop the Coulombicterm Qext exp(-qillz - zol) in (11). 
In the case of field emission, B(z) contains an additional term -eFz due to the externally 
applied electric field F. Finally (Jo(0)  = 1) 
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Figure 2. Electrostatic potential energy of an elec- 
tron located in the vacuum as a function of the 
distance from the surface of semi-infinite semi- 
conductor for GaAs: curve A, dispersionless 
model: curve B, model I; . . . ., specular electron 

-6.51 eV I 5 10 15 

z lau) 

Figure 1. Electrostatic potential energy of an elec- 
tron located in the vacuum as a function of the 
distance from the surface of semi-infinite semi- 
conductor for silicon: curve A, dispersionless 
model; curve B, model I; . . ., specular electron 
reflection model. 

3.3. Results 

After numerical integration once, we obtain the results for B ( z )  which are presented in 
figures 1-3. Figures 1 and 2 show the dependence of the electrostatic energy of an 
electron image-force potential eVind/2 on the distance z from the surface of the semi- 
infinite semiconductor for silicon (c0 = 11.94, kF = 0.96 and kTF = 1.1 in atomic units) 
and GaAs ( E ~  = 13, kF = 0.98 and kTF = 1.12 [14]). Figure 3 illustrates the shape of the 
surface barrier B(z )  = eVind(z)/2 - eFz for silicon when F = 5 X lo7 V cm-’. In all the 
three figures the full curves which are divergent at z = 0 represent the dispersionless 
approximation. The other full curves correspond to the calculations in the framework 
of model I. The full circles indicate the dependence of the potentials on z according to 
the specular electron reflection model. The results obtained with model I1 ( a  = 6.64 au 
for silicon) do not differ very much from those calculated according to model I and for 
simplicity are not shown in the figures. 
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Figure 3. The shape of the surface barrier for 

- - silicon when the external electric field F is 
1 I I 5 X lo7 V cm-’: curve A, dispersionless model; 

The B(z )  curves can be simply approximated by 

B(Z) = -f/k + f/lB(O> I1 - eFz (18) 
where B(0) equals eVi,,(0)/2 and for silicon, when the Schulze-Unger dielectric function 
(equation (6)) is used, is -5.57 eV and -6.51 eV for the specular electron reflection 
model and model I,  respectively. The first value disagrees with that given in [7], where 
the specular electron reflection model is used. When we use the Penn dielectric function 
[15] instead of the Schulze-Unger dielectric function, these values are -6.2 eV and 
-7.4 eV, respectively [16]. Model I1 leads to the result -6.56 eV for equation (6). 

The parameterfis determined by the condition that B ( z )  defined by (18) approaches 
the same maximum as the exact B(z )  does. This means that f depends on the applied 
electric field F i n  the suggested approximation. For silicon characterised by (6) and for 
F = 5 X lo7 V cm-’, f = 5.83 eV au and 6.33 eV au for the specular electron reflection 
model and for model I, respectively. Model I1 gives 6.37 eV au. 

Apart from -eFz the leading term in an asymptotic expansion of B(z )  for large z is 
- e 2 ( E o  - 1 ) / 4 ( ~ ~  + l )z  for all the discussed models, which is in accordance with the 
result for classical dielectric. The first few quantum corrections to B(z)  in the specular 
electron reflection model combined with (6) can be seen from the following asymptotic 
expansion: 

B(z)  = -[e2(Eo - 1)/4(e0 + l)z][[l - [ E ~ / ( E ~  + l ) ]  

+ [EO(EO - W ( E 0  + 1121 
x {[l + (a2 + p2) /v /Eoap]2 / (2Gap + CY2 + p2)} 

x (1/z2) + . . .] - eFz. (19) 

For the remaining models I and I1 the formulae for quantum corrections to B(z )  are long 
and complicated and so we give the values only. Generally, these corrections form an 
expansion in inverse powers of z :  b/z2 + c/z3 + . . . . When z is given in atomic units 
and the potential energy B ( z )  in electronvolts, then the coefficients b and c are as follows: 
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Figure 4. The transmission coefficient as a func- 
tion of the energy Wof the tunnelling electron for 
silicon when F = 5 x lo7 V cm-’: curve A, disper- 
sionless model; curve B, model I; . . . ’, specular 
electron reflection model. 

W (eV) 

Figure 5. The transmission coefficient as a func- 
tion of the energy W of the tunnelling electron 
for GaAs when F = 4.4 x lo7 V cm-’: curve A, 
dispersionless model; curve B model I; . . . ., 
specular electron reflection model. 

for silicon, 1.8607, 3.4352 and 1.5817, 3.9320 for models I and 11, respectively. For 
GaAs, one obtains 1.7935 and 3.4205 for model I .  

4. Transmission through the surface barrier 

We calculate the transmission coefficient D(F,  W) for the surface barrier according to 
the methods in [17, 181 (see also [19]). Wis here the so-called z-directed energy (i.e. the 
part of the energy for motion normal to the surface) of the tunnelling electron: 

v3- 
D(F,  W )  = [ 1 + exp ( -i 1’’ %‘W - B(z )  d z )  ] -’. 

2 1  

Here z1 and z2  are the points at which the integrand has zeros. 
When W is above the peak of the barrier, we suggest a better approximation than 

D(F,  W) = 1 used in [7]. In this region (0.5 S D S 1), we approximate the shape of the 
barrier with (18) and we adopt the analytical formula in [19] to evaluate D(F,  W ) .  

Finally, for W 2 B,,,, we put 

D(F,  W )  = [[I + e ~ p { ~ ( f / e ~ ) ~ ’ ~ ( m ~ e ~ / ~ t i ~ ) ~ ’ ~ [ u ( y ) / y ~ / * ] } D - ~  (21) 
when W S  W ,  = -d/2feF + eFf/lB(O)I, and D(F,  W )  = 1 when W >  W1. Here y = 
w / ( W  - eFf/IB(O)/) and u ( y )  is the function defined in [19]. 
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The results for D ( F ,  W) are presented in figures 4 and 5 .  Curves A correspond to the 
dispersionless approximation, and curves B illustrate the results obtained within the 
framework of model I. The dotted curves represent the calculations according to the 
specular electron reflection model. Model I1 leads to similar results to those of model I. 
One can see that the models of surface screening which we have discussed lead to results 
which differ considerably from those predicted by the dispersionless theory. 

5. Conclusions 

We studied the effect of the spatial dispersion of the semiconductor dielectric function 
on the surface potential barrier. This study was limited to semiconductors in which 
valence band electrons play the major role in the screening and we did not take into 
account, for example, the screening due to the surface states. 

We employed two models of surface screening which are more appropriate for 
semiconductors and dielectrics than the specular electron reflection model used in 
previous calculations [6,7]. 

We confirm previous conclusions that the surface potential barrier is broader than 
predicted by the dispersionless theory. This broadening leads to considerable reduction 
in the emission of electrons. However, the above effects are not as strong as those 
obtained in the framework of the specular electron reflection model. 

In conclusion, we would like to comment on the behaviour of the transmission 
coefficient D as a function of the energy Was displayed in figures 4 and 5.  This problem 
has not yet been discussed. The graphs of D against W (logarithmic scale) can be 
represented by almost straight and parallel lines in a wide energy range W, say, charac- 
teristic of the field emission from valence or conduction bands. From this, it follows that 
the functions D( W) obtained within various surface-screening models (including the 
dispersionless theory) differ only in the proportionality factors which are almost inde- 
pendent of W. This means that the total energy distribution curves of field-emitted 
electrons p r ( E )  cc J D ( E  - E,) d E ,  [5]  calculated with the help of the methods dis- 
cussed have the same relative shapes. For example. for field emission from the valence 
band in GaAs [3] (see also figure 5 in the present paper) the shape of the total energy 
distribution curve (i.e. the curve normalised to unit peak value) will not be affected by 
the changes in surface screening due to dispersion of the bulk dielectric function. This 
conclusion remains true for different values of the electric field F applied in the field 
emission experiments. 

For a given energy W the variation in F does not change very much the ratio of 
the transmission coefficients first obtained within dispersionless theory and second 
calculated within the framework of one of the models discussed (see figure 2 in [6] for 
the specular electron reflection model). This explains the result of the calculations done 
in [7] with the help of the specular model. Compared with the dispersionless theory the 
magnitude of the field-emitted current was reduced but the character of the Fowler- 
Nordheim law was unchanged. 

We believe that the results of our considerations are of practical value to later work 
on an improved theory of field emission from semiconductors. The present theory is not 
as satisfactory as it is for metals and it must be further developed. 



Bulk dielectric function and surface screening 3017 

Acknowledgment 

This paper was partially supported by the Institute of Physics, Polish Academy of 
Sciences. 

References 

[l] Fischer R and Neumann H 1966 Fortschr. Phys. 14 603 
[2] Sokolskaya I L (ed.) 1971 Autoelektronnaya Emissiya Poluprouodnikou (Moscow: Nauka) (in Russian) 
[3] Hughes 0 H and White P M 1969 Phys. Status Solidi 33 309 
[4] Herman M H and Tsong T T 1982 Phys. Reu. Lett. 48 1029 
[5] Stratton R 1964 Phys. Reu. 135 A794 
[6] Voitenko A I, Gabovich A M and Ilchenko L G 1981 Fiz. Tuerd. Tela 23 1531 
[7] Gabovich A M and Voitenko A I 1982 Phys. Status Solidi b 110 407 
[8] Sidyakin A V 1970 Sou. Phys.-JETP 31 308 
[9] Newns D M 1970 Phys. Reu. B 13304 

[lo] Bechstedt F, Enderlein R and Reichardt D 1983 Phys. Status Solidi b 117 261 
[ l l ]  Bardyszewski W, Del Sole R ,  Krupski J and Strinati G 1986 Surf. Sci. 167 363 
[12] Bardyszewski W, Del Sole Rand Krupski J unpublished 
[13] Schulze K R and Unger K 1974 Phys. Status Solidi b 66 491 
[14] Van Vechten J A 1969 Phys. Rev. 182 891 
[15] Penn D R 1962 Phys. Reu. 128 2093 
[16] Cinal M, Del Sole R, Krupski J,  Bardyszewski W and Strinati G 1987 Solid State Commun. 62 633 
[17] Kemble E C 1937 Phys. Reu. 48 549 
[18] Miller S C Jr and Good R H Jr 1953 Phys. Reu. 91 174 
[19] Murphy E L and Good R H Jr 1956 Phys. Reu. 102 1464 


